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A dynamic programming algorithm for prediction of RNA second-
ary structure has been revised to accommodate folding constraints
determined by chemical modification and to include free energy
increments for coaxial stacking of helices when they are either
adjacent or separated by a single mismatch. Furthermore, free
energy parameters are revised to account for recent experimental
results for terminal mismatches and hairpin, bulge, internal, and
multibranch loops. To demonstrate the applicability of this
method, in vivo modification was performed on 5S rRNA in both
Escherichia coli and Candida albicans with 1-cyclohexyl-3-(2-mor-
pholinoethyl) carbodiimide metho-p-toluene sulfonate, dimethyl
sulfate, and kethoxal. The percentage of known base pairs in the
predicted structure increased from 26.3% to 86.8% for the E. coli
sequence by using modification constraints. For C. albicans, the
accuracy remained 87.5% both with and without modification
data. On average, for these sequences and a set of 14 sequences
with known secondary structure and chemical modification data
taken from the literature, accuracy improves from 67% to 76%.
This enhancement primarily reflects improvement for three se-
quences that are predicted with <40% accuracy on the basis of
energetics alone. For these sequences, inclusion of chemical mod-
ification constraints improves the average accuracy from 28% to
78%. For the 11 sequences with <6% pseudoknotted base pairs,
structures predicted with constraints from chemical modification
contain on average 84% of known canonical base pairs.

Recent discoveries have shown that RNA plays a larger role
in biology than previously realized, e.g., in posttranscrip-

tional regulation (1), development (2, 3), immunity (4, 5), and
peptide bond formation (6, 7). It is necessary to determine the
native structures of RNAs to understand their mechanisms of
action, and determining secondary structure is a crucial step in
this process.

RNA secondary structure can be predicted by free energy
minimization with nearest neighbor parameters to evaluate
stability (8–18). Previous studies demonstrated that nuclease
cleavage data can be used to refine structure prediction and
improve accuracy (8, 11). A predicted secondary structure can
guide further experiments or comparative sequence analysis (19)
and also aid in the design of RNA molecules (20, 21).

Chemical modification is a technique that reveals solvent
accessible nucleotides (22). The nucleotides accessible to
1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-
toluene sulfonate, dimethyl sulfate, and kethoxal are unpaired,
in A-U or G-C pairs at helix ends, in G-U pairs anywhere, or
adjacent to G-U pairs. This limited specificity differs from that
observed with nucleases, and an algorithm allowing constraints
from such chemical modification has not been reported.
Chemical modification is used extensively to test hypothesized
RNA secondary structures (19, 23–28). Chemical modification
can also be used to deduce possible tertiary contacts within an
RNA (29), to probe RNA bound to protein (25, 26, 30–35), or

to follow RNA folding pathways (36–38). The method can map
RNA in vivo (39–43), which is not possible with nuclease
mapping. This is an important advantage because much is
not known about renaturing purified RNA into its native
conformation.

In this study, a dynamic programming algorithm for prediction
of RNA secondary structure has been revised to use experimen-
tally determined chemical modification constraints. These con-
straints dramatically improve the accuracy of structure predic-
tion when free energy minimization alone predicts �40% of
known base pairs. The nearest-neighbor parameters for free
energy are also revised on the basis of recent experiments, and
the program RNASTRUCTURE now includes terms for the free
energy of coaxial stacking of helices that are either adjacent or
separated by a single mismatch in multibranch and exterior
loops.

Methods
Nearest-Neighbor Parameters. Thermodynamic parameters are
based on the set of Xia et al. (44–46) and Mathews et al. (8).
Hairpin loop parameters (Tables 1 and 2) are revised on the basis
of recent experimental results (47, 48) and the previous database
of RNA hairpin stabilities (49–55).

Thermodynamic parameters for bulge loops of single nucle-
otides are revised on the basis of measurements by Znosko et al.
(56) by using the model

�G�37 bulge(n � 1) � �G°37 bulge initiation(n)

��G°37(special C bulge)

� �G°37 bp stack

�RT ln(number of states),

where the number of states is the number of secondary
structures containing a bulge of identical sequence in slightly
different positions because of bulge migration, such as ob-
served by NMR (57). For example, an isoenergetic bulged C
in 5�UGU�3�ACCA can occur in two positions. �G°37(special
C bulge), �0.9 � 0.3 kcal (1 cal � 4.18 J)�mol, is an empirical
bonus applied to bulged C residues adjacent to at least one C.
The �G°37 bulge initiation for single nucleotide bulges is 3.81 �
0.08 kcal�mol.

Internal loop free energy parameters are revised on the basis
of recent measurements (58–61) and the previously assembled
database (8, 45, 46, 62–69). In the program described here,
measured values are used when available for 1 	 1, 1 	 2, and

Abbreviation: RT, reverse transcription.
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2 	 2 internal loops, but approximations are used for most
internal loops. The range of measured free energies differs for
different types of internal loops. For example, the range is
roughly 2 and 6 kcal�mol for 1 	 3 and 2 	 2 loops, respectively.
Evidently, different types of loops require different approxima-
tions. Table 3 gives the different approximations used.

The free energy increment for multibranch loop initiation is
roughly approximated by

�G�37 multibranch initiation � a � c*(number of branching helices).

On the basis of experiments (20, 70), a better approximation
would include another term, b*(average asymmetry), but this
cannot be accommodated in a dynamic programming algorithm.
Therefore, asymmetry in the location of unpaired nucleotides in
the loop is neglected. The parameters a and c were optimized by
finding the best set in the region suggested by the experimental
values (70) a � 9.3 � 0.9 kcal�mol and c � �0.6 � 0.2 kcal�mol.
The maximum accuracy of folding was found for a � 9.3
kcal�mol and c � �0.9 kcal�mol. Accuracy was not highly
sensitive to the values of a and c within the region suggested by
experiment.

Incorporating Coaxial Stacking in the Dynamic Programming Algo-
rithm. The RNASTRUCTURE program (8) was extended to in-
clude the free energy increments of coaxial stacking for

adjacent helices as previously implemented (14) and for helices
separated by a single mismatch. The WM array, of size N 	 3,
introduced to speed the multibranch loop calculation (8), is
expanded to N 	 N, where N is the number of nucleotides in
the sequence. At any point in the algorithm where the end of
a helix (defined by i and j) is being considered for a multi-
branch or exterior loop, coaxial stacking of two helices is now
considered. This calculation requires a search of k, i � k � j,
to divide the region into two helix ends. The supporting
information, which is published on the PNAS web site, shows
the required recursions.

Constraining Secondary Structure Prediction with Chemical Modifica-
tion Data. Chemically modified nucleotides are unpaired, in
A-U or G-C pairs at helix ends, in G-U pairs anywhere, or
adjacent to G-U pairs. The dynamic programming algorithm
uses large positive free energies to forbid conformations
inconsistent with the data. The supporting information states
the recursions.

In Vivo Chemical Modification of 5S rRNA. Modification agents were
added to exponentially growing E. coli or C. albicans, OD540
0.4–0.6, at a concentration of 1% vol�vol or wt�vol. At specific
times, 10-ml aliquots of the cultures were removed. Cells were
isolated by centrifugation and washed three times with sterile
water; pellets were immediately placed into a dry ice ethanol
bath. Total RNA was isolated from the cells by treatment with
Triazol reagent (Invitrogen) supplemented by vortexing the cells
with 100 �l of glass beads.

Reverse transcription (RT) was used to determine positions of
modification. RT was run by using standard manufacturer’s
conditions with Na acetate as described (25, 28, 71) with 10 �g
of total RNA in each reaction. Two RT primers were used with
each RNA. For E. coli 5S rRNA, primer sequences were
d(ATGCCTGGCAGTTCCC) and d(CTACCATCGGCGC-
TACGGCG). For C. albicans 5S rRNA, primer sequences were

Table 1. Free energy parameters for hairpin loop formation

Parameter (number of nt or sequence) �G°37, kcal�mol

�G°37 initiation(3) 5.4 � 0.2
�G°37 initiation(4) 5.6 � 0.1
�G°37 initiation(5) 5.7 � 0.2
�G°37 initiation(6) 5.4 � 0.1
�G°37 initiation(7) 6.0 � 0.2
�G°37 initiation(8) 5.5 � 0.2
�G°37 initiation(9) 6.4 � 0.2
�G°37 bonus(UU or GA first mismatch but not AG) �0.9 � 0.1
�G°37 bonus(GG first mismatch) �0.8 � 0.3
�G°37 bonus(special G-U closure) �2.2 � 0.2
�G°37 penalty(C3 loop) 1.5 � 0.5
�G°37 penalty(Cn loop), A 0.3 � 0.1
�G°37 penalty(Cn loop), B 1.6 � 0.9

Hairpin loop stabilities are estimated with the equation �G°37 loop (n 

3) � �G°37 initiation(n) � �G°37(first mismatch stacking) � �G°37 bonus(UU or
GA first mismatch but not AG) � �G°37 bonus(GG first mismatch) � �G°37

bonus(special G-U closure) � �G°37 penalty(oligo-C loops), where n is the
number of unpaired nucleotides in the loop. �G°37(first mismatch stacking)
is derived from studies of terminal mismatch stability as compiled previ-
ously (45, 46). Terminal mismatch free energies for UU mismatches on both
GU and UG pairs were updated from Dale et al. (47). The special GU closure
bonus applies to GU closed hairpins in which a 5� closing G is preceded by
two G residues. The oligo-C penalty applies only to loops composed of all
C residues. The penalty for oligo-C loops 
3 nt is �G°37 penalty(oligo-C loops,
n 
 3) � An � B. In addition to the terms in the above equation, the AU�GU
terminal pair penalty of 0.5 kcal�mol is also applied at the ends of helices
closed by hairpin loops (8, 44). Hairpin parameters were derived from linear
regression on the database, excluding the stable hairpins ACAGUGCU
(where closing pairs are shown and unpaired nucleotides are in bold),
ACAGUGAU, ACAGUUCU, ACAGUACU, CUACGG, CUCCGG, and CUUCGG
(47, 50, 86). The supporting information contains the complete database of
hairpin loops used in the linear regression. Hairpin loops of lengths at 3, 4,
and 6 unpaired nt with measured free energies that are either more or less
stable by 0.9 kcal�mol when compared to prediction by the above model
are included in a separate lookup table (Table 2). Hairpin loops of �3 nt are
prohibited. �G°37(first mismatch stacking) and terminal mismatch bonuses
apply only to hairpin loops 
3 unpaired nt. For hairpin loops 
9 nt,
initiation free energy is approximated (74) by �G°37 initiation(n 
 9) � �G°37

initiation(9) � 1.75RTln(n�9).

Table 2. Lookup table for unstable triloops and stable tetraloops
and hexaloops

Hairpin Ref(s). �G°37 loop, kcal�mol

CAACG 87 6.8
GUUAC 87 6.9
CAACGG 48 5.5
CCAAGG 48 3.3
CCACGG 48 3.7
CCCAGG 48 3.4
CCGAGG 48 3.5
CCGCGG 48 3.6
CCUAGG 48 3.7
CCUCGG 48 2.5
CUAAGG 48 3.6
CUACGG 47, 50 2.8
CUCAGG 48 3.7
CUCCGG 47 2.7
CUGCGG 47 2.8
CUUAGG 48 3.5
CUUCGG 47, 50 3.7
ACAGUACU 86 2.8
ACAGUGCU 86 2.9
ACAGUGAU 86 3.6
ACAGUUCU 86 1.8

For extra stable hairpins measured in 0.1 M Na� (48, 87), placement was
determined by assuming that the relative stability of loops remains constant
between 0.1 and 1 M Na�. All values are based on experimental results rather
than frequencies of occurrence as used in ref. 8. Unpaired nucleotides are
shown in bold.
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d(AGATTGCAGCACAATAC) and d(AATTGCAGCA-
CAATAG). Products were separated on a denaturing 8% poly-
acrylamide gel and quantified with a Molecular Dynamics
PhosphorImager and IMAGE QUANT 4.1 software. Each mapping
experiment was run in at least triplicate, and modifications are
only reported if the nucleotides were modified in each experi-
ment. Strong hits are bands that had at least 10 times the
integrated volume of the equivalent band in the control lane, and
moderate hits are between 3 and 10 times the volume. Loading
was normalized with an RT stop position in each lane that was
unchanged by chemical modification.

Availability. RNASTRUCTURE for Microsoft Windows is available
at the Turner laboratory homepage: http://rna.chem.rochester.
edu. Source code is available from D.H.M. upon request.
Thermodynamic parameters are also available at the Turner
laboratory web site.

Results
Nearest-Neighbor Parameters. Nearest neighbor parameters for
prediction of RNA conformational free energy at 37°C are revised
on the basis of recent experiments on terminal mismatches (47) and
hairpin (47, 48), bulge (56), internal (58–61, 72), and multibranch
(20, 70) loops. RNASTRUCTURE for prediction of secondary struc-
tures is modified accordingly, and coaxial stacking of helices that
are adjacent or separated by a single mismatch has been added. The
algorithm remains O(N3) in time and O(N2) in memory. Although
slower than without coaxial stacking, the calculation remains rapid.
For example, the calculation time for a complete small subunit
rRNA, 1,542 nt, is 20 min, and the memory requirement is 47.1 MB
on a Pentium 4, 1.6 GHz machine with 512 MB of RAM and
Microsoft Windows 2000. The supporting information includes a
table of calculation time and memory use for RNA sequences
ranging from 77 to 2,904 nt.

The average accuracy of secondary structure prediction is
73% � 9% of known canonical base pairs for a database (8) of
�150,000 nt of known RNA structures, divided into domains of

�700 nucleotides (supporting information). The single best
structure of a set of up to 750 predicted suboptimal structures
contains, on average, 87% � 8% of known base pairs. Finally,
97% � 3% of known base pairs are found in at least one of the
suboptimal structures.

Prior studies took secondary structures generated by a dy-
namic programming algorithm and revised the free energies with
a second program, called EFN2 (8, 73), that added free energy
increments for coaxial stacking and a logarithmic dependence
for the penalty for the number of unpaired nucleotides in a
multibranch loop (74). RNASTRUCTURE no longer uses EFN2 to
revise free energies because coaxial stacking increments are now
included in the dynamic programming algorithm. The accuracy
of predictions is essentially identical to that obtained previously
after EFN2 rearrangement (8).

Chemical Modification Data As Folding Constraints. The dynamic
programming algorithm can now incorporate constraints from
chemical modification data. Prior versions of the algorithm were
unable to use these constraints because chemical modifications
occur not just at unpaired nucleotides, but also in A-U or G-C
pairs at the ends of helices, G-U pairs anywhere, or adjacent to
G-U pairs. Previous studies used modification data by either
searching suboptimal structures predicted directly (27, 37) or
generated from motifs found in suboptimal structures (19).
Neither approach is rigorous, because neither guarantees the
lowest free energy structure.

When secondary structure is poorly predicted by free energy
minimization alone, accuracy can be significantly improved by
adding chemical modification constraints. Fig. 1 shows the second-
ary structure predicted for the E. coli 5S rRNA with and without
constraints determined by chemical mapping in vivo. The accuracy
of prediction improves from 26.3% of base pairs correctly predicted
to 86.8% (Table 4). The chemical mapping is consistent with the
secondary structure determined by comparative sequence analysis
(75, 76). Constraints based on in vitro chemical mapping of E. coli
5 S rRNA (29) give identical accuracy.

Table 3. Approximations for internal loop free energy parameters at 37 °C (in kcal�mol)

Specification Free energy increments

�G°37 initiation(n) 0.5 � 0.1 (2) 1.6 � 0.1 (3) 1.1 � 0.1 (4) 2.1 � 0.1 (5) 1.9 � 0.1 (6) 1.9 � 1.08 ln(n�6) (
6)
�G°37 AU�GU 0.7 � 0.1 0.7 � 0.1 0.7 � 0.1 0.7 � 0.1 0.7 � 0.1 0.7 � 0.1
�G°37 asym 0.6 � 0.1 0.6 � 0.1 0.6 � 0.1 0.6 � 0.1 0.6 � 0.1 0.6 � 0.1
Type of loop�first pair: 5�RA�3�YG 5�YA�3�RG 5�RG�3�YA 5�YG�3�RA GG UU

1 	 1 NA NA NA NA �2.6 � 0.2 �0.4 � 0.1 if 5�RU�3�YU
1 	 2 0 �1.1 � 0.2 �1.1 � 0.2 �1.1 � 0.2 �1.1 � 0.2 �0.7 � 0.2
1 	 (n � 1), n 
 3 0 0 0 0 0 0
2 	 3 0 �0.5 � 0.2 �1.2 � 0.1 �1.1 � 0.1 �0.8 � 0.2 �0.4 � 0.1
Others, except 2 	 2 �0.8 � 0.1 �0.8 � 0.1 �1.0 � 0.1 �1.0 � 0.1 �1.2 � 0.1 �0.7 � 0.1

For �G°37 initiation, the total number of nts in the loop is n. Free energy increments for single noncanonical pairs (68, 69), i.e. 1 	 1 loops, are approximated
by �G°37 loop(1 	 1) � �G°37 loop initiation(n � 2) � �G°37 AU�GU (per AU or GU closure) � �G°37 GG (1 	 1) � �G°37 5�RU�3�YU (1 	 1). Here, �G°37 loop initiation(n �
2) is the free energy of initiation for a single noncanonical pair with adjacent GC pairs; �G°37 AU�GU is the penalty for replacing a closing GC pair with an
AU or GU pair and replaces the AU�GU terminal pair penalty used for helices (8, 44), �G°37 GG(1 	 1) is a bonus for a GG pair in a 1 	 1 loop; and �G°37

5�RU�3�YU (1 	 1) is a bonus for a 5�RU�3�YU stack in a 1 	 1 loop, where R is A or G in an AU or GC pair. Free energy increments for symmetric 2 	 2 loops
lacking a measured value are approximated by interpolation of measured increments for loops of similar sequence (supporting information). Increments
for nonsymmetric 2 	 2 loops are approximated by �G°37 loop (5�PXYS�3� QWZT) � 0.5 [�G°37(5�PXWQ�3�QWXP) � �G°37(5�TZYS�3�SYZT)] � �p � �G°37

GG(2 	 2). Here, PQ and ST are canonical base pairs and XW and YZ are noncanonical pairs. The �p term (0.6 � 0.2 kcal�mol) is applied to loops
with an AG or GA pair adjacent to a UC, CU, or CC pair and to loops with a UU pair adjacent to an AA pair. The �G°37 GG(2 	 2) term (�1.3 � 0.2 kcal�mol)
is applied to loops with a GG pair adjacent to an AA or any noncanonical pair with a pyrimidine. Values for �p and �G°37 GG were obtained by linear
regression on the 2 	 2 loop database (8, 58, 62, 64, 65, 68). Other internal loops are approximated by �G°37 loop(n) � �G°37 loop initiation(n) � �G°37 AU�GU�
�n1 � n2� �G°37 asym � �G°37 first noncanonical pairs(except for 1 	 (n � 1) for n 
 3). Here, �G°37 loop initiation(n) is the free energy of initiation for a loop of n
nucleotides, �G°37 asym is a penalty for loops with unequal numbers of nucleotides on each side, with n1 and n2 the number of nucleotides on each side,
�G°37 first noncanonical pairs (except for 1 	 (n � 1) for n 
 3) is a parameter for the incremental free energy of the first noncanonical pair on each side of the
loop; it is not applied to loops of the form 1 	 (n � 1) with n 
 3. Values for the parameters were obtained from a set of fits to available data for 1 	 1
(69), 1 	 2 (59, 62, 63), 1 	 3 (59, 62), 2 	 2 (8, 58, 62, 64, 65, 68), 2 	 3 (59, 61, 62), and 3 	 3 (ref. 62 and X. Jiao and D.H.T., unpublished results) loops
(supporting information) and from theory (74) for n 
 6. NA, not applicable to that type of loop. Identical values for adjacent parameters indicate that
they were fit as a single parameter.
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For C. albicans 5S rRNA, chemical mapping in vivo is con-
sistent with the structure determined by comparative sequence
analysis (supporting information). The predicted secondary

structure is 90.6% accurate when calculated with or without
chemical modification constraints (Table 4).

Table 4 also contains results for 14 RNA sequences of known

Fig. 1. The E. coli 5S rRNA secondary structure predictions and chemical modification. Heavy lines indicate base pairs in the known secondary structure (76, 88). (A)
The predicted lowest free energy structure without experimental constraints. (B) The structure predicted with constraints from chemical modification data specified.

Table 4. The average accuracy of structure prediction with and without constraint with chemical modification data expressed as
percentage of known canonical base pairs correctly predicted

RNA type Ref(s). Species
Pseudoknot
basepairs, %

Unconstrained Constrained

LFE Best LFE Best

Signal recognition particle RNA 77, 81 Dog 0.0 18.2 97.7 84.1* 98.9*
5S rRNA in vivo 76 E. coli 0.0 26.3 86.8 86.8 97.4
Small subunit rRNA 25, 78 E. coli 1.6 39.0 49.0 63.3 73.2
RNase P 32, 80 Chromatium vinosum 10.5 53.5 81.6 53.5 81.6
RNase P 31, 80 Bacillus subtilis 7.1 56.3 70.5 56.3 68.8
RNase P 32, 80 E. coli 9.8 58.1† 73.4 64.5† 74.2
RNase P 30, 80 Saccharomyces cerevisiae 7.4 59.3 78.7 58.3 78.7
Telomerase RNA in vivo 43, 82, ‡ Tetrahymena thermophila 10.5 65.8 84.2 65.8 84.2
group I bI5 78, 89 S. cerevisiae 5.0 78.2 83.2 81.5 83.2
group I Intron in vivo 43, 78 T. thermophila 4.7 83.0 90.7 83.0 90.7
group II Intron aI5c 27, 79 Yeast 0.0 86.1 89.1 77.7 82.2
group I Intron L-21 Sca I 37, 78 T. thermophila 5.0 86.7 90.0 89.2 90.8
5S rRNA in vivo 76 C. albicans 0.0 90.6† 90.6 90.6† 90.6
Large subunit rRNA (domain 1) 26, 78 E. coli 0.4 88.9 90.5 88.9 91.3
group II Intron 79, 90 Pylaiella littoralis 0.0 90.3† 94.6 90.3† 94.6
5S rRNA 24, 76 Mouse 0.0 94.4 100.0 88.9 94.4
Average 67.2 84.4 76.4 85.9

Accuracies are reported for both the lowest free energy structure (LFE) and best suboptimal structure in a set of up to 750 structures, generated with a window
size of zero.
*Results are reported for protein-bound RNA; when naked RNA chemical modification data are used, the accuracy is 64.8% for the lowest free energy structure
and 89.8% for the best suboptimal structure.

†Best of three or four structures having identical free energies.
‡ten Dam, E., van Belkum, A. & Pleij, K. (1991) Nucleic Acids Res. 19, 6951.
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secondary structure with chemical modification data available in
the literature (24–27, 30–32, 37, 43, 76–82, �). The average
accuracy of secondary structure prediction without and with
experimental constraints for the total database is 67% and 76%,
respectively. This enhancement primarily reflects improvement
for three sequences that are predicted with �40% accuracy on
the basis of energetics alone.

The extent of chemical modification is generally graded into
strengths. In this study, strong and moderate modifications are
used as constraints. In most studies, weakly modified nucleotides
can occur buried in helices and therefore are not suitable as
constraints for secondary structure prediction. For example, 22
of 251 weak modifications in the small subunit rRNA are
inconsistent with the accepted secondary structure (25, 78).

Discussion
Determination of RNA structure is important for understanding
structure–function relationships and designing of therapeutics
and diagnostics that target RNA. Free energy minimization is an
important tool for elucidating RNA secondary structure because
it can aid in the determination of a comparative sequence
analysis model or suggest possible structures to test by site-
directed mutagenesis or other methods. The accuracy of free
energy minimization is limited, however, by lack of knowledge of
the sequence and salt dependence of energetics and of the effects
of tertiary and protein interactions. Constraints from chemical
modification (22, 25, 28) can partially compensate for incom-
plete knowledge of all the factors determining RNA structure.
Perhaps of most importance, in vivo studies (39–43) circumvent
the difficulties (83) of finding in vitro conditions that mimic the
native structure. This feature is an advantage of chemical
modification as compared with nuclease mapping (84).

The in vivo chemical modification of E. coli 5S rRNA (Fig. 1)
illustrates the impact of chemical modification constraints on
secondary structure prediction. The results in Fig. 1 differ from
previous in vitro mapping (29), largely because fewer nucleotides
are accessible with in vivo mapping, probably because of protein
binding. For example, nucleotides 73, 78, 99, and 104, which are
accessible to modification in vitro, are not modified in vivo. In
addition, the accessible nucleotides in the largest hairpin loop
are shifted two nucleotides 5� in the in vivo mapping so that four
consecutive nucleotides are modified starting at position 38 in
vivo as opposed to position 40 in vitro. Nevertheless, the chemical
modification constraints increase the accuracy of secondary
structure prediction from 26.3% to 86.8% (Table 4).

The results for dog signal recognition particle RNA further
illustrate how chemical modification data can compensate for
factors not included in structure prediction algorithms. The results
from chemical modification change when the signal-recognition
particle RNA is bound to protein (77). Presumably, the structure
deduced by phylogenetic comparison (81) corresponds to the
structure with protein bound. Thus, it is encouraging that the
predicted structure is closest to the phylogenetic structure when
chemical modification data for the RNA–protein complex (84.1%)
rather than for the naked RNA (64.8%) are used as constraints
(Table 4). Predictions of RNA secondary structure usually provide
a number of possible structures with similar predicted free energies
(8, 12, 15–18). In some cases, these predictions may reflect con-

formational switches that can be induced by binding of protein or
other perturbations. Chemical modification constraints obtained in
the presence and absence of protein and�or under different con-
ditions may help reveal such dynamics.

The results in Table 4 fall into three general classes. Chemical
modification constraints dramatically improve predictions of the
three sequences that are �40% accurate on the basis of energetics
alone. Sequences predicted with between 53% and 66% accuracy
when unconstrained all have 
7% of their nucleotides in
pseudoknots. Pseudoknots are not allowed by the algorithm used in
this study, and chemical modification restraints have little effect on
the accuracy of prediction for these cases. The third class comprises
eight sequences predicted with 
78% accuracy on the basis of
energetics alone. On average, the chemical modification results
decrease the accuracy of predictions for these structures by 1%
because of results for the yeast aI5c Group II intron and the mouse
5S rRNA. For the yeast Group II intron, 12 of the 127 moderate
modifications violate the assumed rules; i.e., they are buried in
helices and not in G-U pairs or adjacent to G-U pairs. This finding
suggests that the Group II intron has more than one conformation
in the mapping conditions used or that the structure from sequence
comparison is not an equilibrium structure for naked RNA. For
comparison, the Phalacrocoracidae littoralis Group II intron was
mapped with a homogeneous sample and the constraints do not
decrease accuracy. On the other hand, for mouse 5S rRNA, the
modification data are consistent with the known secondary struc-
ture. For this case, a chemical modification is not consistent with the
94.4% accurate structure predicted by energetics alone, and an
88.9% accurate structure with two fewer correct base pairs is the
predicted lowest free energy structure consistent with the modifi-
cation data.

The approach described here for incorporating chemical
modification constraints can be applied in essentially any dy-
namic programming algorithm for prediction of RNA secondary
structure. In general, the constraints will reduce the number of
structures generated. This should facilitate identification of
pseudoknots by programs that allow them (14, 15). The inclusion
of coaxial stacking in the dynamic programming algorithm of
RNASTRUCTURE will also improve applications using dot plots
because they now include the effects of coaxial stacking.

One difficulty in predicting RNA secondary structure is that
the promiscuity of base pairing and the limited knowledge of the
sequence dependence of loop energetics results in a large
number of local free energy minima representing different
secondary structures. The results presented here show that in
vitro and in vivo chemical modification data can be used as
constraints to limit predictions to those closely related to the
structure of RNA in its true biological context. On average for
sequences with �6% of nucleotides in pseudoknots, the struc-
tures predicted with constraints from chemical modification
contain 84% of the known canonical base pairs. Such an accurate
secondary structure model in conjunction with comparative
sequence data can then be used to model tertiary contacts and
therefore global folds (85). Development of more specific chem-
ical modification reagents would allow tighter constraints and
therefore even better deductions of secondary structures.
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